

Chapter 17 Magnetic field

Prepared & Presented by: Mr. Mohamad Seif

BROBLEM

Three bar magnets are placed as shown in the adjacent figure.

- The magnitudes of the magnetic fields created by these three bar magnets at point M are $B_1 = B_2 = 0.5T$ and $B_3 = 0.3T$. Take $\sqrt{2} = 1.4$
- 1) Represent the three magnetic field vectors created by these three magnets at M.
- 2) Determine the characteristics of the resultant magnetic field \overrightarrow{B} due to these three magnets.

$$B_1 = B_2 = 0.5T$$
 and $B_3 = 0.3T$. Take $\sqrt{2} = 1.4$

1) Represent the three magnetic field vectors created by these three magnets at M.

$$B_1 = B_2 = 0.5T$$
 and $B_3 = 0.3T$. Take $\sqrt{2} = 1.4$

2) Determine the characteristics of the resultant magnetic field \vec{B} due to these three magnets.

$$\overrightarrow{B}_{1,2} = \overrightarrow{B}_1 + \overrightarrow{B}_2$$

$$B_{1,2} = \sqrt{B_1^2 + B_2^2} = \sqrt{(0.5)^2 + (0.5)^2}$$

$$B_{1,2} = 0.7T$$

$$B_1 = B_2 = 0.5T$$
 and $B_3 = 0.3T$. Take $\sqrt{2} = 1.4$

$$\overrightarrow{B} = \overrightarrow{B}_{1,2} + \overrightarrow{B}_3$$

$$B = B_{1,2} - B_3 = 0.7 - 0.3 = 0.4T$$

BROBLEM

A magnetic needle movable around a vertical axis, is under the action of a magnetic field, of magnitude $B = 3.46 \times 10^{-5} T$, perpendicular to the plane of the magnetic meridian.

Under its influence, the needle deviates by an angle of 60° w.r.t the plane of the magnetic meridian.

1) How to specify, using the needle, the magnetic meridian in the place of the experiment?

- 2) Draw a figure, showing the direction of the needle and the magnetic fields acting on it.
- 3) Calculate the value of the B_h of the terrestrial magnetic field.
- 4) The magnetic inclination in the place of the experiment is: $I = 62^{\circ}$. Calculate the magnitude of the terrestrial magnetic field.

ACADEMY

$$B = 3.46 \times 10^{-5} T, 60^{\circ}$$

- 1) How to specify, using the needle, the magnetic meridian in the place of the experiment?
- The needle can rotate around a vertical axis, in the absence of the magnetic field \overrightarrow{B} , it is directed along \overrightarrow{B}_H of the terrestrial magnetic field.
- The plane of the magnetic meridian is the vertical plane parallel to the direction of the needle or containing this needle.

$$B = 3.46 \times 10^{-5} T, 60^{\circ}$$

2) Draw a figure, showing the direction of the needle and the magnetic fields acting on it.

The needle is under the action of two horizontal magnetic fields field \overrightarrow{B} and \overrightarrow{B}_H .

Then the needle turns in the horizontal plane by an angle α to take the direction of the resultant \overrightarrow{B}_r as shown in the figures.

$$B = 3.46 \times 10^{-5} T, 60^{\circ}$$

3) Calculate the value of the B_h of the terrestrial magnetic field.

Using the geometry of figure (a):

$$tan\alpha = \frac{B}{B_h}$$
 $\Rightarrow B_h = \frac{B}{\tan \alpha} = \frac{3.46 \times 10^{-5}}{\tan (60)}$

$$B_h = 1.997 \times 10^{-5} T$$

$$B_h = 2 \times 10$$

$$B = 3.46 \times 10^{-5} T, 60^{\circ}$$

4) The magnetic inclination in the place of the experiment is: $I = 62^{\circ}$. Calculate the magnitude of the terrestrial magnetic field.

Using the geometry of figure (b):

$$CosI = \frac{B_H}{B_T} \longrightarrow B_T = \frac{B_H}{CosI} = \frac{2 \times 10^{-5}}{cos(62)}$$

